131 Pages
English

Towards autonomous DNA-based nanodevices [Elektronische Ressource] / vorgelegt von Tim Liedl

-

Gain access to the library to view online
Learn more

Description

Towards autonomous DNA-basedNanodevicesTim LiedlMun¨ chen 2007Towards autonomous DNA-basedNanodevicesTim LiedlDissertation an der Fakult¨at fur¨ Physikder Ludwig–Maximilians–Universit¨atMunchen¨vorgelegt vonTim Liedlaus Munch¨ enMunchen,¨ den 4.4.2007Erstgutachter: PD Dr. F. C. SimmelZweitgutachter: Prof. Dr. J. O. R¨adlerTag der mund¨ lichen Prufung:¨ 23.5.2007Contents1 Introduction - DNA-based Nanodevices 11.1 DNA-based structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 devices (Ref. [1]) . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Enzymatically driven DNA-based devices (Ref. [1]) . . . . . . . . . . . . . 42 Theoretical and Experimental Basics 72.1 Physical properties of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Thermodynamics of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Characterization of DNA-based nanodevices . . . . . . . . . . . . . . . . . 112.3.1 Energy transfer between fluorophores . . . . . . . . . . . . . . . . . 112.3.2 Energy transfer near metal surfaces . . . . . . . . . . . . . . . . . . 133 Determination of DNA Melting Temperatures 153.1 DNA melting temperature determination by thermal denaturation . . . . . 153.2 DNA Melting temperature determination in chemical gradients (Ref. [2]) . 174 A DNA switch driven by a Chemical Oscillator 214.1 Non-equilibrium systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.2 Reaction di!

Subjects

Informations

Published by
Published 01 January 2007
Reads 11
Language English
Document size 18 MB

Towards autonomous DNA-based
Nanodevices
Tim Liedl
Mun¨ chen 2007Towards autonomous DNA-based
Nanodevices
Tim Liedl
Dissertation an der Fakult¨at fur¨ Physik
der Ludwig–Maximilians–Universit¨at
Munchen¨
vorgelegt von
Tim Liedl
aus Munch¨ en
Munchen,¨ den 4.4.2007Erstgutachter: PD Dr. F. C. Simmel
Zweitgutachter: Prof. Dr. J. O. R¨adler
Tag der mund¨ lichen Prufung:¨ 23.5.2007Contents
1 Introduction - DNA-based Nanodevices 1
1.1 DNA-based structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 devices (Ref. [1]) . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Enzymatically driven DNA-based devices (Ref. [1]) . . . . . . . . . . . . . 4
2 Theoretical and Experimental Basics 7
2.1 Physical properties of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermodynamics of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Characterization of DNA-based nanodevices . . . . . . . . . . . . . . . . . 11
2.3.1 Energy transfer between fluorophores . . . . . . . . . . . . . . . . . 11
2.3.2 Energy transfer near metal surfaces . . . . . . . . . . . . . . . . . . 13
3 Determination of DNA Melting Temperatures 15
3.1 DNA melting temperature determination by thermal denaturation . . . . . 15
3.2 DNA Melting temperature determination in chemical gradients (Ref. [2]) . 17
4 A DNA switch driven by a Chemical Oscillator 21
4.1 Non-equilibrium systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Reaction di!usion processes . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Oscillatory systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 pH-sensitive DNA devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Switching the conformation of a DNA molecule with a chemical oscillator
(Ref.[3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 A surface-bound DNA switch driven by a chemical oscillator (Ref.[4]) . . . 32
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Controlled Trapping and Release of Quantum Dots 35
5.1 Reversible hydrogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Fluorescent nanocrystals as colloidal probes in complex fluids (Ref. [5]) . . 38
5.3 DNA-crosslinked gels as programmable drug delivery system (Ref. [6]) . . 41
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6 Glossary 47vi Inhaltsverzeichnis
Appendix 49
Determination of 1D di!usion constants . . . . . . . . . . . . . . . . . . . . . . 49
Reference [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Reference [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Reference [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Bibliography 106List of Figures
1.1 DNA cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 DNA tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Enzymatically driven DNA device . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 DNA double helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 F¨ orster resonance energy transfer . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Melting behavior of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Formamide lowers T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17M
3.3 Multilayer microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 DNA dissociation along a formamide gradient . . . . . . . . . . . . . . . . 19
3.5 Microfluidic for 2D gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Cell in non-equillibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Activator-substrate reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Predator-prey model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Activatior-substrate reaction without di!usion . . . . . . . . . . . . . . . . 28
4.6 Belousov-Zhabotinsky reaction . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 pH-dependent DNA devices . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 pH-Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 DNA tethered to gold islands . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Polyacrylamide network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Antigen responsive hydrogel . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Fluorescent nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Fluorescent correlation spectroscopy . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Saturation of fluorophores . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Acrydite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Gel crosslinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Trapped quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 Dissolution of a DNA crosslinked hydrogel . . . . . . . . . . . . . . . . . . 44
6.1 Particle displacement statistics . . . . . . . . . . . . . . . . . . . . . . . . . 50viii Abstract
Abstract
Molecular recognition, programmability, self-assembling capabilites and biocompatibility
are unique features of DNA. The basic approach of DNA nanotechnology is to exploit these
properties in order to fabricate novel materials and structures on the nanometer scale. This
cumulative dissertation deals with three aspects of this young research area: fast analysis,
autonomous control of functional structures, and biocompatible autonomous delivery sys-
tems for nanoscale objects.
1. At low temperatures and under favorable bu!er conditions, two complementary
DNA strands will form a double-helical structure in which the bases of the two strands
are paired according to the Watson-Crick rules: adenine bases bind with thymine bases,
guanine bases with cytosine bases. The melting temperature T of a DNA duplex isM
defined as the temperature at which half of the double strands are separated into single
strands. The melting temperature can be calculated for DNA strands of known sequences
under standard conditions. However, it has to be determined experimentally for strands
of unknown sequences and for applications under extreme bu!er conditions. A method
for fast and reliable determination of DNA melting temperatures has been developed.
Stable gradients of the denaturing agent formamide were generated by means of di!usion
in a microfluidic setup. Formamide lowers the melting temperature of DNA and a given
formamide concentration can be mapped to a corresponding virtual temperature along
the formamide gradient. Di!erences in the length of complementary sequences of only
one nucleotide as well as a single nucleotide mismatch can be detected with this method,
which is of great interest for the detection of sequence mutations or variations such as
single nucleotide polymorphisms (SNPs).
2. Knowledge of the stability of DNA duplexes is also of great importance for the
construction of DNA-based nanostructures and devices. Conformational changes occuring
in artificially generated DNA structures can be used to produce motion on the nanometer
scale. Usually, DNA devices are driven by the manual addition of fuel molecules or by the
periodic variation of bu!er conditions. One prominent example of such a conformational
change is the formation of the so-called i-motif, which is a folded four-stranded DNA
structure characterized by noncanonical hemiprotonated cytosine-cytosine base-pairs. In
order to achieve controlled autonomous motion, the oscillating pH-value of a chemical
oscillator has been employed to drive the i-motif periodically through its conformational
states. The experiments were conducted with the DNA switch in solution and attached to a
solid substrate and constitute the first example of DNA-based devices driven autonomously
by a chemical non-equilibrium reaction.
3. Finally, a DNA-crosslinked and switchable polyacrylamide hydrogel is introduced,
which is used to trap and release fluorescent colloidal quantum dots in response to exter-
nally applied programmable DNA signal strands. Trapping and release of the nanoparticles
is demonstrated by studying their di!usion properties using single molecule fluorescence
microscopy, single particle tracking and fluorescence correlation spectroscopy. Due to the
biocompatibility of the polymerized acrylamide and the crosslinking DNA strands, suchAbstract ix
gels could find application in the context of controlled drug delivery, where the autonomous
release of a drug-carrying nanoparticle could be triggered by naturally occurring, poten-
tially disease-related DNA or RNA strands.x Zusammenfassung
Zusammenfassung
DNA, der Tr¨ager der Erbinformation, ist nicht nur ein langlebiger Informationsspeicher,
sondern hat auch die F¨ ahigkeit zur molekularen Erkennung und programmierbaren Selbst-
organisation. Die DNA-Nanotechnologie bedient sich dieser einzigartigen Eigenschaften
um neuartige Materialien und funktionale Strukturen zu erscha!en. Diese kumulative
Dissertation besch¨ aftigt sich mit drei verschiedenen Aspekten dieses jungen Forschungsge-
bietes: schnellen und zuverl¨ assigen Analysetechniken, Wegen zur autonomen Kontrolle von
funktionalen Nanostrukturen und biokompatiblen programmierbaren Transportsystemen.
1. Die Stabilit¨ at einer DNA-Doppelhelix h¨ angt sowohl von der Sequenz der Basen als
auch von Temperatur und Zusammensetzung des L¨ osungsmittels ab. Die Schmelztem-
peratur T einer DNA-Doppelhelix ist definiert als die Temperatur, bei der die H¨ alfteM
der Doppelstr¨ange in Einzelstrange¨ dissoziiert ist. Unter Standardbedingungen kann die
Schmelztemperatur eines Doppelstrangs bekannter Basenfolge berechnet werden, jedoch
muss sie fur¨ Str¨ ange unbekannter Basenfolge sowie fur¨ Anwendungen unter extremen
Pu!erbedingungen experimentell bestimmt werden. In dieser Arbeit wurde ein Verfahren
zur schnellen und zuverl¨ assigen Bestimmung der Schmelztemperatur kurzer DNA-Str¨ ange
entwickelt. Dafur¨ wurden in einem Mikrofluidikchip Di!usionsgradienten der denatu-
rierenden Substanz Formamid erzeugt. Mit Hilfe des Chips konnten Schmelztemperaturen
verschiedener DNA-Str¨ange so genau gemessen werden, dass L¨ angenunterschiede von einem
Basenpaar oder einzelne Basensubstitutionen detektiert werden konnten. Diese Methode
k¨ onnte daher Anwendung in der Analyse von Einzelnukleotidpolymorphismen finden.
2. Fur¨ die Entwicklung von Nanostrukturen, die aus selbstorganisierenden DNA-Str¨ an-
gen bestehen, ist die Kenntnis des Dissoziationsverhaltens der in der Struktur enthaltenen
DNA-Doppelstr¨ ange von großer Bedeutung. Bei einer Vielzahl DNA-basierter Strukturen
¨kann durch eine Ver¨ anderung der Umgebungsbedingungen, z.B. durch eine Anderung des
pH-Wertes des L¨ osungsmittels, eine Konformations¨ anderung ausgel¨ ost werden. Auf diese
Weise lassen sich kontrollierte Bewegungen auf der Nanometerskala erzwingen. In den
meisten F¨ allen wird der momentane Zustand dieser dynamischen Strukturen durch einen
externen Operator kontrolliert. Um autonome Bewegung zu erzeugen, wurden in diesem
Projekt Konzepte der nicht-linearen Chemie genutzt. Es ließ sich zeigen, dass der pH-
¨abh¨ angige Ubergang eines Cytosin-reichen DNA-Stranges von einer ungeordneten Kon-
formation zum so genannten ”‘i-Motiv”’ durch einen chemischen pH-Oszillator getrieben
werden kann. Das i-Motiv konnte auf diese Weise sowohl in L¨ osung als auch an eine
Oberfl¨ ache gebunden reversibel und periodisch ge¨ o!net und geschlossen werden. Das Sys-
tem stellt die erste bewegliche DNA-basierte Struktur dar, die sich durch eine chemische
Nichtgleichgewichtsreaktion autonom schalten l¨asst.
3. Abschließend wird ein schaltbares Polyacrylamidgel vorgestellt, das durch Zu-
gabe von programmierbaren DNA-Str¨ angen reversibel vernetzt werden kann. Ein derarti-
ges Gel wurde genutzt, um fluoreszierende Nanokristalle einzuschließen und anschließend
wieder freizugeben. Die sich a¨ndernden Di!usionseigenschaften der Nanokristalle wurden
mit Einzelfluoreszenzmikroskopie und Fluoreszenzkorrelationsspektroskopie nachgewiesen.