Weighted consecutive ones problems [Elektronische Ressource] / vorgelegt von Marcus Oswald

English
125 Pages
Read an excerpt
Gain access to the library to view online
Learn more

Description

mMarcusUGURAL-DISSERHeidelbTundlicAvTIONSinsheimzurufung:ErlangungvderDiplom-MathematikDoktorwaldagurdePrderatNaturwissenscerghaftlicorgelegth-MathematisconhenerGesamOswtfakultausatTderderINARuprechenht-Karls-Univ28.5.2003ersitDr.WGerhardeighctedProf.ConsecutivHans-GeorgeDr.OnesReineltProblemsDr.Gutach.c.hBoter:kProf.owenImLZeichendes.Con.tenetsonesIntedtro3.1.2duction.1.Outline.of.the.thesis..........................3.2...3.3...............matrix.....column...Structure.....olytop....23.1.3Ac.knoacetswledgemen.t....form.......2.2.1.................on.......2.4.1.....2.4.2.problem...........3.e.denitions.......consecutiv3C1R1.Preliminaries.5.1.1.Linear.algebrainequalities.......trivial.....er's.......3.2.1.......b.....29...consecutiv.ert...........2.3..............5.1.2.Graph2.4theorycomplexit...............e.tation.........w.e.........2.4.3.erm.............F.the.P.3.1.results....6.1.3.Complexit.y.theory3.1.1.ones.P...........facet-dening...........v.............3.1.4.b...........uc.haracterization...

Subjects

Informations

Published by
Published 01 January 2003
Reads 20
Language English
Report a problem

m
Marcus
UGURAL-DISSER
Heidelb
T
undlic
A
v
TION
Sinsheim
zur
ufung:
Erlangung
v
der
Diplom-Mathematik
Doktorw
ald

ag
urde
Pr
der
at
Naturwissensc
erg
haftlic
orgelegt
h-Mathematisc
on
hen
er
Gesam
Osw
tfakult
aus
at
T
der
der
INA
Ruprec
hen
h

t-Karls-Univ
28.5.2003
ersitDr.
W
Gerhard
eigh
c
ted
Prof.
Consecutiv
Hans-Georg
e
Dr.
Ones
Reinelt
Problems
Dr.
Gutac
h.c.
h
Bo
ter:
k
Prof.owen
Im
L
Zeichen
des.
Con
.
ten
e
ts
ones
In
ted
tro
3.1.2
duction
.
1
.
Outline
.
of
.
the
.
thesis
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.2
.
.
.
3.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
matrix
.
.
.
.
.
column
.
.
.
Structure
.
.
.
.
.
olytop
.
.
.
.
2
3.1.3
Ac
.
kno
acets
wledgemen
.
t
.
.
.
.
form
.
.
.
.
.
.
.
2.2.1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
on
.
.
.
.
.
.
.
2.4.1
.
.
.
.
.
2.4.2
.
problem
.
.
.
.
.
.
.
.
.
.
.
3
.
e
.
denitions
.
.
.
.
.
.
.
consecutiv
3
C1R
1
.
Preliminaries
.
5
.
1.1
.
Linear
.
algebra
inequalities
.
.
.
.
.
.
.
trivial
.
.
.
.
.
er's
.
.
.
.
.
.
.
3.2.1
.
.
.
.
.
.
.
b
.
.
.
.
.
29
.
.
.
consecutiv
.
ert
.
.
.
.
.
.
.
.
.
.
.
2.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
.
1.2
.
Graph
2.4
theory
complexit
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e
.
tation
.
.
.
.
.
.
.
.
.
w
.
e
.
.
.
.
.
.
.
.
.
2.4.3
.
erm
.
.
.
.
.
.
.
.
.
.
.
.
.
F
.
the
.
P
.
3.1
.
results
.
.
.
.
6
.
1.3
.
Complexit
.
y
.
theory
3.1.1
.
ones
.
P
.
.
.
.
.
.
.
.
.
.
.
facet-dening
.
.
.
.
.
.
.
.
.
.
.
v
.
.
.
.
.
.
.
.
.
.
.
.
.
3.1.4
.
b
.
.
.
.
.
.
.
.
.
.
.
uc
.
haracterization
.
.
.
.
6
.
1.4
.
Com
.
binatorial
.
optimization
.
problems
preliminary
.
.
.
.
.
.
.
.
.
.
.
.
.
acets
.
staircase
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
.
The
.
e
.
prop
.
y
.
.
7
.
1.5
.
P
.
olyhedral
.
theory
.
.
.
.
.
.
.
.
.
.
14
.
PQ-trees
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
16
.
Results
.
the
.
y
.
.
.
.
.
.
.
.
8
.
1.6
.
Branc
.
h-and-cut
.
.
.
.
.
.
.
.
.
.
.
.
18
.
Consecutiv
.
ones
.
augmen
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
18
.
The
.
eigh
.
consecutiv
.
ones
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
20
.
Fixed
.
p
9
utation
1.6.1
.
Branc
.
h-and-b
.
ound
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
21
.
The
.
acial
.
of
.
Consecutiv
.
Ones
.
olytop
.
23
.
Basic
.
and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9
.
1.6.2
.
Cutting
.
plane
23
metho
The
d
e
.
p
.
e
.
m;n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23
.
Lifting
.
inequalities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
24
10
Melting
2
alid
The
.
Consecutiv
.
e
.
Ones
.
Problem
.
13
.
2.1
.
Notations
.
.
.
.
.
.
.
.
.
.
24
.
F
.
induced
.
y
.
inequalities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
26
.
T
.
k
.
c
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
26
13
A
2.2
IP
Denition
ulation
of
.
the
.
problem
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
26
.
F
.
induced
.
y
.
inequalities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
vii
.