29 Pages
English
Gain access to the library to view online
Learn more

Lavoisier and the improvement of gunpowder production/Lavoisier et l'amélioration de la production de poudre - article ; n°1 ; vol.48, pg 95-122

-

Gain access to the library to view online
Learn more
29 Pages
English

Description

Revue d'histoire des sciences - Année 1995 - Volume 48 - Numéro 1 - Pages 95-122
RÉSUMÉ. — Nous examinons trois aspects de la fonction de Lavoisier en tant que régisseur des poudres : la relation de son travail avec la tradition de recherche du XVIIIe siècle visant à l'amélioration balistique de la poudre ; ses recherches relatives à la chimie de l'acide nitrique et de la potasse, menées dans le but de développer une production « artificielle » de salpêtre ; l'impact de la science lavoisienne sur l'amélioration de la poudre. Nous montrons que son influence principale réside dans l'établissement d'une formation scientifique pour les commissaires des poudres. Le cas d'un de ces commissaires, Benoît La Forte est examiné.
SUMMARY. — Three topics are addressed concerning Lavoisier's activities as a régisseur des poudres : the relationship of Lavoisier's work to the eighteenth-century research tradition of the ballistic improvement of gunpowder; Lavoisier's investigations into the chemistry of nitric acid and potash in the context of his efforts to develop « artificial » saltpeter production; the effect of Lavoisian science on the improvement of gunpowder. It is argued that the principal effect came from the institution of scientific training for the commissaires des poudres. The case one such commissaire, Benoît La Forte, is examined.
28 pages
Source : Persée ; Ministère de la jeunesse, de l’éducation nationale et de la recherche, Direction de l’enseignement supérieur, Sous-direction des bibliothèques et de la documentation.

Informations

Published by
Published 01 January 1995
Reads 21
Language English
Document size 2 MB

Exrait

M SEYMOUR H. MAUSKOPF
Lavoisier and the improvement of gunpowder
production/Lavoisier et l'amélioration de la production de poudre
In: Revue d'histoire des sciences. 1995, Tome 48 n°1-2. pp. 95-122.
Résumé
RÉSUMÉ. — Nous examinons trois aspects de la fonction de Lavoisier en tant que régisseur des poudres : la relation de son
travail avec la tradition de recherche du XVIIIe siècle visant à l'amélioration balistique de la poudre ; ses recherches relatives à la
chimie de l'acide nitrique et de la potasse, menées dans le but de développer une production « artificielle » de salpêtre ; l'impact
de la science lavoisienne sur l'amélioration de la poudre. Nous montrons que son influence principale réside dans l'établissement
d'une formation scientifique pour les commissaires des poudres. Le cas d'un de ces commissaires, Benoît La Forte est examiné.
Abstract
SUMMARY. — Three topics are addressed concerning Lavoisier's activities as a régisseur des poudres : the relationship of
Lavoisier's work to the eighteenth-century research tradition of the ballistic improvement of gunpowder; Lavoisier's investigations
into the chemistry of nitric acid and potash in the context of his efforts to develop « artificial » saltpeter production; the effect of
Lavoisian science on the improvement of gunpowder. It is argued that the principal effect came from the institution of scientific
training for the commissaires des poudres. The case one such commissaire, Benoît La Forte, is examined.
Citer ce document / Cite this document :
MAUSKOPF SEYMOUR H. Lavoisier and the improvement of gunpowder production/Lavoisier et l'amélioration de la production
de poudre. In: Revue d'histoire des sciences. 1995, Tome 48 n°1-2. pp. 95-122.
doi : 10.3406/rhs.1995.1223
http://www.persee.fr/web/revues/home/prescript/article/rhs_0151-4105_1995_num_48_1_1223Lavoisier and the improvement
of gunpowder production (*)
Seymour H. Mauskopf (**)
RÉSUMÉ. — Nous examinons trois aspects de la fonction de Lavoisier en
tant que régisseur des poudres : la relation de son travail avec la tradition de
recherche du xvme siècle visant à l'amélioration balistique de la poudre ; ses recher
ches relatives à la chimie de l'acide nitrique et de la potasse, menées dans le
but de développer une production « artificielle » de salpêtre ; l'impact de la science
lavoisienne sur l'amélioration de la poudre. Nous montrons que son influence
principale réside dans l'établissement d'une formation scientifique pour les comm
issaires des poudres. Le cas d'un de ces commissaires, Benoît La Forte est
examiné.
MOTS-CLÉS. — Balistique; alcali fixe végétal; poudre; Lavoisier; acide
nitrique; salpêtre.
SUMMARY. — Three topics are addressed concerning Lavoisier's activities
as a régisseur des poudres : the relationship of Lavoisier's work to the eighteenth-
century research tradition of the ballistic improvement of gunpowder; Lavois
ier's investigations into the chemistry of nitric acid and potash in the context
of his efforts to develop « artificial » saltpeter production; the effect of Lavoi-
sian science on the improvement of gunpowder. It is argued that the principal
effect came from the institution of scientific training for the commissaires des
poudres. The case of one such commissaire, Benoît La Forte, is examined.
KEYWORDS. — Ballistics; fixed vegetable alkali; gunpowder; Lavoisier; nitric
acid; saltpeter.
Lavoisier's activities as a member of the Régie des poudres
(1775-1792) have long been recognized as perhaps the most signifi
cant aspect of the practical and institutional side of his scientific
(*) A version of this paper, under the title, « The Chemists and the Régie des poudres »,
was given in 1989 at the session, « Chemistry : Revolution or Evolution? » of the Summer
Meeting of the British Society for the History of Science in Edinburgh, Scotland. I should
like to thank M. Patrice Bret for reading this manuscript and making some useful sugges
tions for its improvement. The reworking of this paper was carried out during the tenure
of my National Science Foundation grant No. sbe 9212385.
(**) Seymour H. Mauskopf, Duke University, Department of History, 226 Carr Buil
ding, Box 90719, Durham, North Carolina 27708-0719, usa.
Rev. Hist. Sci., 1995, XLVIII/1-2, 95-121 96 Seymour H. Mauskopf
career (1). The most elaborate study has focused on his unsucc
essful attempt to develop a « crash program » in artificial salt
peter production (2), but other aspects of his activities as a régisseur
des poudres have not been so well studied. Nor do we know much
about the background and context of these activities, especially
regarding the study of gunpowder to understand and improve its
action.
It is this topic, with which my own research has made me famil
iar, that I shall treat here. I shall argue that much of Lavoisier's
activities as a munitions scientist was embedded in already-existing
traditions of practical scientific discussion. There are two themes
or issues in particular that thread through such eighteenth-century
discussion. One was the amelioration of gunpowder quality, which
meant for this period primarily the maximization of its ballistic force.
A second was the insurance of an adequate supply of the ingredient
in gunpowder most difficult to secure : saltpeter. In his role as régis
seur, Lavoisier was mainly concerned with the second issue, but
the fruits of his research had implications for the first one too.
Moreover, I shall argue that his concern with the saltpeter supply
may have supplied a context (not fully explored) for one of Lavois
ier's major achievements of the 1770s : the analysis of nitric acid.
Lavoisier was named a founding régisseur when the Régie des
poudres was formed in the summer of 1775 both for his manifest
administrative ability as a fermier général (the other three were
administrators) and « aussi [parce qu'il était] connu par ses lumières
en chymie, essentiellement nécessaires pour ce genre d'aUministra-
tion (3) ». This expression of the importance of chemistry to muni-
(1) Charles C. Gillispie, Science and polity at the end of the old regime (Princeton :
Princeton Univ. Press, 1980), chapter I. 6. A very recent account of the formation and
early history of the Régie can be found in the essay by Patrice Bret, Annexe III : La
Régie des poudres et salpêtres, 1775-1792, in Correspondance de Lavoisier, t. V (Paris :
Académie des sciences, 1993), 261-269. See also Lucien Scheler, Lavoisier et la Régie des
poudres, Revue d'Histoire des Sciences, XXVI/3 (1973), 193-222. For a general account
of Lavoisier's administrative activities see : Arthur Donovan, Antoine Lavoisier : science,
administration, and revolution (Oxford : Black well, 1993).
(2) Robert P. Multhauf, The French crash program for saltpeter production, 1776-1794,
Technology and Culture, XII/2 (1971), 163-181. See also, William A. Smeaton, Two unre
corded publications of the Régie des poudres et salpêtres probably written by Lavoisier,
Annals of Science, XII/2 (1956), 157-159.
(3) Quoted from Edouard Grimaux, Lavoisier, 1743-1794, d'après sa correspondance,
ses manuscrits, ses papiers de famille et d'autres documents inédits (Paris : F. Alcan, 1888),
84, from P. -S. Dupont de Nemours, Mémoires sur la vie de Turgot (Philadelphie, 1782). The improvement of gunpowder production 97
tions undoubtedly expressed a common expectation of the Enligh
tenment for the practical utility of science (4). One objective of
this paper will be to evaluate the practical utility of Lavoisian munit
ions science.
Gunpowder is a mixture of saltpeter (KNO3), sulphur and
charcoal. These ingredients are pulverized separately and then tr
iturated or « incorporated » together by pounding or grinding for
many hours to insure intimate mixture, with some water added
to moisten the mixture into a paste. The paste is then « corned »
or grained to form the final product. The actual manufacture of
gunpowder was a traditional craft with little « scientific » input
before the eighteenth century (5). However, from mid-seventeenth
century at least there had been interest in exactly what transpired
during gunpowder explosion. The most evident physical datum was
that the solid substance, gunpowder, expanded to many times its
volume during explosion through the production of some kind of
elastic fluid. Exactly what was the volumetric ratio of elastic fluid
to original solid gunpowder and what was the nature of the elastic
fluid itself were subjects of investigation and discussion through
out the late seventeenth and most of the eighteenth century (6).
These investigations and discussions appear sometimes to have
been carried out purely for scientific interest; however they were
often part of more practical projects to increase the ballistic force
(4) One striking example of eighteenth-century rhetoric specifically on the usefulness
of chemistry to munitions is provided by Hermann Boerhaave in his Elements of chemistry
(London, 1735) :
« It were indeed to be wish'd that our art had been less ingenious, in contriving means
destructive to mankind; we mean those instruments of war which were unknown to the
ancients, and have made such havoc among the moderns. But as men have always been
bent on seeking each other's destruction by continual wars; and as force, when brought
against us, can only be repelled by force, the chief support of war must, after money,
be now sought in chemistry. » (Quoted by T. L. Davis in : Chemistry in War : An
18th Century Viewpoint, Army Ordnance, V/30 (1925), 783.)
(5) See A. Rupert Hall, Gunnery, science, and the Royal Society, in John G. Burke
(éd.), The Uses of science in the age of Newton (Berkeley, ca : Univ. of California Press,
1983), 111-141, especially 125-126.
(6) Seymour H. Mauskopf, Gunpowder and the Chemical Revolution, in Arthur Donovan
(éd.), The Chemical Revolution : essays in reinterpretation, Osiris, 2nd series, t. IV [1988],
93-118. 98 Seymour H. Mauskopf
of gunpowder by determining and analyzing the parameters of this
characteristic. During the 1750s in France, there were two separate
studies devoted to this objective : one was reported in Diderot's
Encyclopédie (7); the other in Antoine Baume 's Chymie expéri
mentale et raisonnée (8) and, more elaborately, in the chevalier
[Patrice] d'Arcy's Essai d'une théorie d'artillerie (9).
D'Arcy is an interesting and neglected figure in eighteenth-
century science. Like his English contemporary, Benjamin Robins,
d'Arcy combined career interests in the military with those in
science (10). Born in Ireland in 1725 into a Catholic and Jacobite
family, d'Arcy was sent to France in 1739; it was there that the
young man first made his mark as a mathematician, securing suf
ficient respect to achieve entry into the Académie des sciences in
1749. In the meantime, he had seen service in the military, among
other adventures, against Great Britain, in which he almost lost
his life. He virtually alternated between military and scientific pur
suits during the rest of his life (11).
Both aspects were intimately united in the Essai. The work was
designed to study what d'Arcy termed « la partie physique » or
« théorie de l'artillerie », by which he meant the study and expli
cation of the material nature of gunpowder, metallurgy and dimens
ions of cannon, and the movement of the projectile through the
air, all to maximize military effectiveness (12).
Gunpowder's quality was judged primarily by the strength of
its motive force. D'Arcy, like Robins, was concerned to improve
the instrumentation for the accurate measure of this. The tradi
tional measuring device was a small mortar which took a fixed
volume of powder to project a cannon ball of standard size in
(7) Feux d'artifice, Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et
des métiers, éd. Denis Diderot and Jean d'Alembert (Paris [and Neufchâtel] : Briasson
[etc.], 1751-1765), t. VI (1756), 640-643. This was a report of tests carried out at the powder
mill near Paris at Essonne; the proportions of the constituents were varied to ascertain
which dosage was the best; sulphurless powder was also tested.
(8) Antoine Baume, Chymie expérimentale et raisonnée, 3 tomes (Paris : P. -F. Didot,
le jeune, 1773).
(9) [Patrice] d'Arcy, Essai d'une théorie d'artillerie (Dresden : Walther, 1766).
(10) In the Essai, d'Arcy signally excepted Robin's New Principles of Gunnery (London,
1742) from his categorical condemnation of all previous artillery treatises as unscientific
(d'Arcy, op. cit. in n. 9, 7-8).
(11) See the « Eloge » in Histoire de l'Académie Royale des Sciences, 1779 (published
1782), 54-70.
(12) D'Arcy, op. cit. in n. 9, 12-13. The improvement of gunpowder production 99
the open field. D'Arcy pointed out the defects of this method;
variation in atmospheric conditions or in the shape and friction
in the mortar of the ball could affect the results, sometimes drasti
cally (13). To achieve a much greater degree of accuracy and sta
bility of measurement of the motive force of gunpowder, d'Arcy
invented a pendulum test piece; motive force was measured by
the arc traversed by a cannon placed at the bob of a pendulum
in reaction to its firing (14).
D'Arcy proposed a series of systematic parameter variation expe
riments to determine what constituted the best gunpowder. The
parameters he chose were : composition, proportions of the stan
dard ingredients, method of fabrication (15). Lack of resources
prevented d'Arcy from testing the first parameter (16) but he did
tabulate (from Stephen Hales' Vegetable Staticks) all substances
that produced « une grande quantité de fluide élastique (17) ».
Prior to discussing the experiments involving variation in pro
portions of the standard ingredients, d'Arcy reported on experiments
correlating ballistic power of different gunpowders (as measured
by his pendulum probe) and their speed of inflammation. D'Arcy
concluded that there was a direct relationship between them (18).
In order to study variation in the composition of the powders,
it was, of course, necessary to be able to separate the components,
(13) Ibid., 20-21.
(14) For description see ibid., 20 f. and figures.
D'Arcy reported that a large-scale model was ordered by the count d'Argenson (ministre
de la Guerre) and that it was tested in the presence of the lieutenant général des armées
du roi and inspecteur général de l'artillerie, de Vallière {ibid., 25) in December, 1754.
Although it did not replace the traditional method of measuring motive force, it was consi
dered by experts to be the most accurate available measure of gunpowder's ballistic force.
(15) The « manipulation » {ibid., 12).
(16) Ibid., 34.
(17)15; tables on p. 16-20, often with an estimate of the volumetric ratio of
elastic fluid to original solid.
(18) /. e. : « ... que plus la poudre s'enflamme promptement, plus le recul est grand,
caeteris paribus. » {Ibid., 31.) The issue arose because of what seemed an inordinate diffe
rence in the ballistic force of military powder and hunting powder (with the former much
more powerful). He sifted the two types of powder to test whether powder grain size was
the critical factor; it proved to be negligible. He then tested the rate of inflammation
of the two types of powders by burning powder trains in carefully measured grooves.
He found that hunting powder burned much more slowly than military powder. Adjust
ment was made for the difference in densities of the powders. D'Arcy concluded that
the difference in ballistic force would have to come either from difference in dosage or
in manipulation. {Ibid., 27-31.) The experiments on ballistic force were carried out in
December, 1754 before de Vallière; those on rates of inflammation, 22 July, 1754. 100 Seymour H. Mauskopf
saltpeter, sulphur and charcoal. Although these are only mechanic
ally combined, their intimate mixture presented problems akin
to those of truly chemical separation. In order to resolve them,
d'Arcy sought the services of the young apothecary and chemist,
Antoine Baume. Baume, like d'Arcy, was to be involved with gun
powder production throughout his career. For d'Arcy, he produced
a scheme of separating the components (the separation of the
sulphur and charcoal was particularly challenging) and he performed
quantitative analyses of the different gunpowder samples (19).
D'Arcy concluded :
« De ces expériences il résulte que c'est à la manipulation ou aux
petites différences entre les quantités de soufre & de charbon que tient
cette différence prodigieuse de force (20). »
This led d'Arcy into a set of experiments testing the ballistic
power of gunpowder while systematically varying the proportions
of the ingredients. A series of such tests «pour reconnoitre la
meilleure dose de soufre » was carried out starting December 20,
1754, in which the sulphur content was systematically varied while
that of the saltpeter and charcoal were kept constant (21); similar
tests varying the charcoal content were performed in the spring
of 1755 using powders in which the trituration had been varied.
In one batch, the saltpeter and sulphur had been triturated before
the charcoal was added; in the other, the three ingredients had
all been triturated together (22).
In fact, although interesting correlations between ballistic force
and dosages of sulphur and charcoal appear in d'Arcy's tables,
what ended up of greater significance was the apparent role of
(19) Ibid., 35-47. Baume gave an account of the start of his association with d'Arcy
in Chymie expérimentale et raisonnée :
« En 1752, M. le Chevalier d'Arcy, de l'Académie Royale des Sciences, me pria de faire
l'analyse de plusieurs poudres, dont les forces étoient différentes, afin de connoître si on
devoit les attribuer aux doses des substances qui les composaient, & qu'on pouvoit soup
çonner n'être pas les mêmes, ou être toute autre chose. Il me pria aussi de composer
de nouvelles poudres, à l'effet de déterminer les meilleures proportions des substances qui
composent la poudre. Je fis sur cet objet beaucoup d'expériences, dont je vais rendre
compte. » (Baume, op. cit. in n. 8, t. I, 454.)
(20) D'Arcy, op. cit. in n. 9, 47.
(21) Ibid., 52-56.
(22)57-61. The improvement of gunpowder production 101
manipulation (trituration and granulation) in affecting the ballistic
force of gunpowder :
« De ces expériences, il résulte, que de petites différences dans la mani
pulation causent plus de variété dans la force des poudres, que des grandes
différences dans les proportions des matières qui les composent (23). »
Baume reproduced and corroborated d'Arcy's account in his
chemistry textbook of 1773 (24), adding some information and
insights of his own. For instance, Baume questioned the convent
ional wisdom that the best type of charcoal came from « light »
woods, such as the black alder ordained by the government (25).
More concretely than had d'Arcy, Baume discussed the question
of « manipulation » of gunpowder : he asserted that powder which
had been triturated and then granulated or « corned » had less
ballistic power than powder left ungrained, all things being equal.
The reduction in ballistic force resulted, Baume asserted, from the
water which was required to compact the powder (and which led
to some of the niter crystallizing out within the powder grains,
as Baume observed under a lens. Therefore, in order to conserve
ballistic force, Baume recommended that gunpowder be grained
under the driest possible conditions (26).
(23) Ibid., 67. D'Arcy also tested powder containing doses of common salt on the basis
of Stephan Hales' report that this substance produced « air ». He found (as expected)
deleterious effects (61-63). D'Arcy commented on the considerable impurities contained
in the saltpeter supplied to the arsenal (and the resultant dangers to the process of gun
powder manufacture) (64-66) and on the nature of the charcoal used (he did not think
that the wood source made much difference in the quality of gunpowder) (66-67).
(24) Baume, op. cit. in n. 8, t. I, 453-479. He gave an account of his actual collabora
tion with d'Arcy in 1754-1755 :
« Le 20 Décembre 1754, & jours suivants, j'ai fait cinq essais de poudre, dans lesquels
le nitre & le charbon sont constamment employés aux mêmes doses mais en variant celle
du soufre [...] afin de connaître les meilleurs proportions de cette substance. On n'en
a point fait entrer dans le premier essai par ce moyen, on peut juger de son utilité dans
la composition de la poudre. On a gardé ces poudres dans un endroit très sec, jusqu'au
20 Avril 1755, qui est le jour où on les a éprouvées au poids d'une once chacune [...]
On a conservé le restant de ces essais dans un endroit très sec, jusqu'au 15 de Juin suivant.
On les a fait sécher dans un alambic au bain marie, couvert de son chapiteau, & on les
a éprouvés de nouveau dans la même machine, & pareillement au poids d'une once. »
{Ibid., 460.)
(25) « A Essône, où l'on fabrique de la poudre, on se sert de charbon de bois de
bourdaine, quoique il ne soit pas meilleur que le charbon ordinaire qu 'on brûle dans les
laboratoires de chymie. » (Ibid., 455.)
(26) Ibid., 457-458, 460-461. Baume did hold to what I have elsewhere called the
« aqueous » explanation of gunpowder explosion, derived from Stahl and held by mid- 102 Seymour H. Mauskopf
Baume also discussed explicitly (as d'Arcy had not) what the
test data on systematic variation in dosages indicated for ballistic
force. Sulphur and charcoal were both found to be necessary ingre
dients. For sulphur :
« Au reste, il est visible que le soufre est si nécessaire dans la poudre,
qu'à mesure qu'on en augmente la dose, en augmente sa force : cepen
dant cela doit avoir des limites (27). »
In addition, Baume asserted that sulphur conserved powder against
the effects of humidity which damaged powder that was too high
in charcoal content. But charcoal was also essential : « Un mélange
de nitre & de soufre, fait dans toutes sortes de proportions, ne
peut s'enflammer dans aucune arme à feu (28). » The proportion
of niter, sulphur and charcoal which produced powder with the
greatest ballistic force seemed to be 6 : 2 : 1 (29).
D'Arcy's and Baumé's concerns and experiments regarding gun
powder can be, I think, taken as representative of mid-eighteenth-
century scientific interest in explosives. Both d'Arcy and Baume main
tained their interest in and association with this subject into the period
of the Régie des poudres (d'Arcy died in 1779, Baume in 1804). Both
served on the commission appointed by the Académie des sciences
to judge the artificial saltpeter competition that the Régie initiated.
Still later, Baume contributed to the solution of two practical che
mical problems associated with saltpeter production : how to purify
crude saltpeter quickly and efficiently and how to assay samples of it.
There is evidence that Lavoisier was interested (and participated)
in the gunpowder research program of d'Arcy and Baume. Marc
elin Berthelot cited an interesting example dating from November,
1777 in his analysis of Lavoisier's laboratory registers : Lavoisier
tested the ballistic force of different powders using d'Arcy's pen
dulum probe, in the presence of a group of scientists and régis
seurs including d'Arcy himself (30). Tests to determine the
century phlogistonists. In this, water as a chemical « principle » and component of the
nitric acid in saltpeter is vaporized (and converted into « air »). See Mauskopf, op. cit.
in n. 6, 98-100. This aqueous principle was completely separate from the ordinary water
about which Baume is writing here.
(27) Baume, op. cit. in n. 8, 462.
(28) Ibid., 463.
(29)463 and tables, 464-465.
(30) Marcelin Berthelot, La Révolution chimique — Lavoisier (Paris : F. Alcan, 1890),
registre IX, 297. The improvement of gunpowder production 103
relationship between the duration of « stamping » and the ballistic
force of powder from February, 1777 are cited in the same register (31).
In articles (unpublished) on « charbon » and « détonation »
intended for the Dictionnaire d'artillerie of the Encyclopédie méthod
ique, Lavoisier alluded to various aspects of what I shall call
the d'Arcy-Baumé research program. In the first, he raised the
question of the relative merits of different wood sources for char
coal, especially in the light of the practical problem of securing
sufficient quantities of the one source mandated by the gunpowder
ordonnance of 1686 : black alder (bourdaine) :
«... mais il y a quelque lieu de craindre que le choix prescrit par
l'ordonnance de 1686 n'ait pas été déterminé par des expériences assez
décisives. Les régisseurs ont fait des recherches à cet égard lorsqu'ils ont
été chargés du service des poudres, mais ils n'ont pu trouver aucune
trace des motifs sur lesquels on s'était fondé. Les ouvrages de quelques
savants, notamment de M. le comte d'Arcy et de M. Beaumé, l'un et
l'autre membres de l'Académie des sciences, qui affirment positivement
qu'un grand nombre de charbons sont aussi propres que celui de bour
daine à la fabrication de la poudre, ont encore augmenté leurs [the régis
seurs^ doutes à cet égard, et ils ont cru qu'il était de leur devoir de
s'assurer par des expériences si la préférence exclusivement accordée par
les règlements au bois de bourdaine était fondée (32). »
The instituted program was a chemical one; since, by the time
Lavoisier wrote the article, it was known that the critical compon
ent of charcoal (for gunpowder) was carbon, tests were made
to establish which charcoal sources left the least non-carbonaceous
residues (saline and earthy) after combustion. Although several types
of wood and other vegetable substances seemed to be as good
as black alder in this regard, there were other chemical complexit
ies (33) and the régisseurs recommended the return to direct ball
istic tests of powder made with different charcoal sources (34).
However, no change was made in the regulation.
(31) Ibid.
(32) Sur le charbon, in Œuvres de Lavoisier, 6 tomes (Paris : Impr. impériale, 1862-1893),
t. V, 308.
(33) The presence of difficult-to-detect and deleterious graphite. The chemical program
appears to have been very similar to that carried out independently by J.-L. Proust a few
years later. Seymour H. Mauskopf, Chemistry and cannon : J.-L. Proust and gunpowder
analysis, Technology and Culture, XXXI/3 (1990), 398-426, especially 406-409. Proust's
results led him to advocate hemp over black alder as the wood source of choice. See below.
(34) The régisseur Le Torte had been carrying them out. (Œuvres, op. cit. in n. 32,
t. V, 310.)