09 Sound Isolation by Harmonic Peak Partition For Music Instrument  Recognition
17 Pages
English
Downloading requires you to have access to the YouScribe library
Learn all about the services we offer

09 Sound Isolation by Harmonic Peak Partition For Music Instrument Recognition

Downloading requires you to have access to the YouScribe library
Learn all about the services we offer
17 Pages
English

Description

Fundamenta Informaticae XXI (2001) 1001–1017 1001IOS PressSound Isolation by Harmonic Peak Partition For Music InstrumentRecognitionXin ZhangDepartment of Computer Science,University of North Carolina, CharlotteNC 28223, USAxinzhang@uncc.edu´Zbigniew W. RasDepartment of Computer ScienceUniversity of North Carolina, CharlotteNC 28223, USAras@uncc.eduAbstract. Identification of music instruments in polyphonic sounds is difficult and challenging, es pecially where heterogeneous harmonic partials are overlapping with each other. This has stimulatedthe research on sound separation for content based automatic music information retrieval. Numer-ous successful approaches on musical data feature extraction and selection have been proposed forinstrument recognition in monophonic sounds. Unfortunately, none of those algorithms can be suc cessfully applied to polyphonic sounds. Based on recent successful researches in sound classificationof monophonic sounds and studies in speech recognition, Moving Picture Experts Group (MPEG)standardized a set of features of the digital audio content data for the purpose of interpretation of theinformation meaning. Most of them are in a form of large matrix or vector of large size, which are notsuitable for traditional data mining algorithms; while other features in smaller size are not sufficientfor instrument recognition in polyphonic sounds. Therefore, these acoustical features themselvesalone cannot be successfully applied ...

Subjects

Informations

Published by
Reads 19
Language English

Exrait

Fundamenta Informaticae XXI (2001) 1001–1017 IOS Press
1001
Sound Isolation by Harmonic Peak Partition For Music Instrument Recognition
Xin Zhang Department of Computer Science, University of North Carolina, Charlotte NC 28223, USA xinzhang@uncc.edu ZbigniewW.Ras´ Department of Computer Science University of North Carolina, Charlotte NC 28223, USA ras@uncc.edu
Abstract. Identification of music instruments in polyphonic sounds is difficult and challenging, es-pecially where heterogeneous harmonic partials are overlapping with each other. This has stimulated the research on sound separation for content-based automatic music information retrieval. Numer-ous successful approaches on musical data feature extraction and selection have been proposed for instrument recognition in monophonic sounds. Unfortunately, none of those algorithms can be suc-cessfully applied to polyphonic sounds. Based on recent successful researches in sound classification of monophonic sounds and studies in speech recognition, Moving Picture Experts Group (MPEG) standardized a set of features of the digital audio content data for the purpose of interpretation of the information meaning. Most of them are in a form of large matrix or vector of large size, which are not suitable for traditional data mining algorithms; while other features in smaller size are not sufficient for instrument recognition in polyphonic sounds. Therefore, these acoustical features themselves alone cannot be successfully applied to classification of polyphonic sounds. However, these features contains critical information, which implies music instruments’ signatures. We proposed a novel music information retrieval system with MPEG-7-based descriptors and we built classifiers which can retrieve the important time-frequency timbre information and isolate sound sources in poly-phonic musical objects, where two instruments are playing at the same time, by energy clustering between heterogeneous harmonic peaks.
Keywords: Music Instruments Detection, MPEG-7 descriptors, Musical Sound Separation, Energy
utilniedenilcsrae,alicwhschiseloronaFFpTiotnfohtelocalmaximumampdnufehtfflatnemacyenqureths,hu.TTFopotFatiahniwtgermintepleoultiamfranecinntcheaebonicpeakejthharmnitsuremfohtkehtd).Amplitudeinli(tomonhpnociosnu3AofaB-latcnerisnartneitatsafoeectrerspthetuminugeriFpewo.1hTarscale.deinlineA.pmilutciosnu)dteburodadilyristeromneverenEsiygrs(ssieaks.icpemrnolaahverenusd13e[ses(eeTronsiiceD,)]5[,]71[eesiidtsirubetadornearscale.EnergyskaegiF.2eruehT.daunwhfemoarcpnisa-iehuqydtstsaerspepowemintctru(teniralnohponomoffaeoattcaB-3AclacssalareiihcrocpruredcaiontirehtkeN-seoteghthmandothNalgoritevahsreissalcrediinedorplexenberdceosnuertn-fefems(systtionogni,D])crisinimtAanylan,sishgiHrOrederStatistics,AritcaiNluearNlteSus,rkwoectVorppihcaMrotguoR,sensandhSetenMaHiddoMedkrvoctH.sle,icustmenerffdiofsroivaheberutaeftyofarieidevtheweuotred,wovesmH.anthheotbelyerttin-tnacadetgisseenreporierhasbn,coalsslaosnusdehtdesaecissalcswerisscrinchhiperorerecsaletad18][see[andw9]),issatacsnoietsyhin-arericchclalmoapirostntoehonationaccuracyincneyceruqatflmanectrurspepowe.Inaegetnierascinomrndfuofespltiulrme,engreiarsnofmrributedcsaredistoroTrehtorfmFTSmurfortiescditerefererdifassintclotlcesryfhtsaislcalinrshu.Tesascevahewsuofnesoharch.2.SoundIsoltaoiAnglrotimhaHepesatarmuedcasiuoslisdnruoneserndasnetain4Coundid3nosnualiroAcfesthatede,imetamniloivfoyalperewappingwitheachotstuocrseraoeevlrsonadmunwhixeaer.reheroFpmaxi,elteoslpseluitsem,itchplepultiithmnemurtsnitnereffdiomfrcsnimoarfhenraaehcTFopnistseveralFloselyonosciwdnuylopnohpakpena.IrmhaiconiopTFFfoehtnistnperswepoytmbructegcakaniominhhrakasacpeatercclustnI.rsihaese,hcrapweieplcldateusirgnethcinuqtesoeparatetheenergyHz40f4soleipltmusdaerpsrehtoeht;rmultegendinarou52zH25.3sefoitlpostwsoeterthreeao:scesenrahfinomibutednetisdistriltngereraesevarverestnty.raehThmmaHwgniodnipotwtherintime,withaalppniwgtiehcaohhwicwhs,r-veeoerbuswotnitnemges-discsbyaSTFTretemalpidsoemtnsegessecuadeW.)3orpe,(4),(5)geee(urciepkaS.hcahmrnoaroundeaheenergytgniretsulcybdetenemplimenbeasnhtaoiperanusd,eoseforTheroid.entrciepkawsreeetsmiatedbysearchingf-rewt-founowrebmFF(N.TT)haheonrmoiwnlotu84sasa02ext-thenerpolarglim03ottdnocesileterwhs,esTrFFhezeofeachon.Thesinewtsaesus-besmguiacoftymptealorcrepitpeamuhraeneraninthwithchisfsroametseitegfo10toetsswazesiopihw,sdnocesillim
en.Figure4.Oneseecuderhslabltekaecthstluinerrogpethggerdwnoierehencyrequure5.Figufdnonsuatflmaneitswicongemoo-hhrapesfotmrahdetafleruqnednmaneatgenousfuwithhomoomrascinaraphdetetrsSeofhe.Theot(»)jrS,º2gewd2olj)lk"¹()),n(χ(nxam=jkh.)01(alumornfditepuom.ccy.3ermraHugiFstluilreyancueeqilhgihahtiwdetarfferwodisoftoniclarfemtnnuadneftonrmhaofstakpeiclus-erehstestnatceofquensHpjpeakehtrgoteamesforoasanndcegoinerrdhtiwremaosegnitrnthissequenceofpybhtfeeruqneycI.,skaeprobhgienfoirpacheaor,fkseano:sauitsetiislbeposthreearethersrobferankaehgiedimeepatetthimwoteowmiemuocr;ehtmesoundsromthesaol2gkld2#¼1(ewrSrelk)wheefunisthlatnemadcneuqerfktheftyoumtrnshine,t(χ)nsihtFeTFcoefcient.Herewmilehttinarefoegarsefochloralpcackinidpioavoeaktkafoybepenraugapursondoursheotan,yltneuqesnoC.ectinstrumkdominanerustlninestiwllmoarcpnietksfhsoew,nttupskaeehT.refo.Thercesdsouosnuteowhtsoskfoeacpnimoarshouvierpehtfooitarehtordingtourcesaccsouodnoseetnehwtgyertwbentioenheaptstitrtsysrmeteretaheonsugo-eeentbetwmediwoimnoitarapygrenefonueesbhaseordfsetsreniagglrotimhprocessed.Thecluonegepsuiwkaebll,oreytnlheheroteehT.ecruosdnuosetouesdeiasdcirthehprehtonatdepkaesamomthrefreakaosdnecrunereuosteoonheftpas;ofrtnkiehgobidtapeaemtwodiffrsarefrosondoutsIns.ceurnecssihteht,oirantaldameuencfreqtfoweiosreneidffncuestyimuheipltacilnoithtfonufetwooverlappingpeka,shwreteehrfqetnufdnmadffieferental(sonepkabhroengipj+1andHsHpjtedaisniatnochcihw,)soleipltmueregnt